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ABSTRACT

An analysis of the coverage pattern of transmitting equipment
in the interference region requires a solution to the geometrical ray
configuration which is valid within the effective line-of-sight of the
transmitter. The limiting parameter on the accuracy required in the
analysis is quite high for relatively short wave lengths of transmitted
signal. The effects of the atmosphere and physical irregularities will
be shown to modify an assumed geometric configuration. In addition,
the results of the analysis will be shown solvable on a digital computer.
The techniques of the solution will be indicated.

iii



CONTENTS

Chapter Page
ABSTRACT iii
1 INTRODUCTION 1
II FUNDAMENTAL CONCEPTS OF PROPAGATION 3
A. Generalized Philosophy 3
B. One-Way Transmission 6
C. Radar Transmission 8
D. The Propagation Factor ' 10
II1 THE FORMULATION OF THE DIFFERENCE BETWEEN THE
PHASE OF DIRECT AND SCATTERED ENERGY DUE TO
PATH LENGTH DIFFERENCE — AR 17
A. The Exact Equations 17
B. The Cubic in rl 20
C. The Flat Earth Approximation 23
D. The Author's Analysis — The Exact Transcendental 25
Equations
v PROPAGATION FACTOR COMPONENTS OTHER THAN AR 37
A. The Complex Coefficient of Reflection 37
B. The Divergence Factor 40
C. The Implementing Expressions 42
\' LIMITATIONS OF THE ANALYSIS 47
A. The Equation of the Ray 47
B. The Effect of n 51
C. The Modified Index and Effective Ae 52
D. Additional Limitations on a Ray Analysis 53
E. The Rough Reflector 55
F. Antenna Phase Pattern Effect 57



Chapter

VI

vix

Appendices

CONTENTS (Continued)

A DIGITAL COMPUTER ANALYSIS

A. The Necessary Equations

B. General Computation Logic

C. Fortran Listing
CONCLUSIC W
ACKNOWLEDGMENT

BIBLIOGRAPHY

APPENDIX A

APPENDIKX B

vi

Page
59

59
65
73

89
91

93



CHAPTER I

INTRODUCTION

An analysis covering the area of pattern propagation will deal with the area of
coverage of an airborne platform housing electronic equipment which transmits and
receives electromagnetic waves of various types of modulation. The object of this paper
will not be to analyze the airborne equipment itself, but rather to deal with the pattern
of, or area of coverage of, the equipment in the earth's atmosphere, given the trans-
mitting and receiving field strength functions of the platform. In other words, the
properties of the airborne antenna will be an independent variable in determining the
electromagnetic field strength at a given point in space relative to the airborne system.
In general, the area to be covered will be an analysis of electromagnetic wave propagation
from the time it leaves the airborne platform, until it reaches its target, and in the case
of a radar system, returns to the platform again. Or for example, in the case of a
radar platform located at X yo above a reference to the earth, at what coordinates will

a target be in the detection range of the radar?

This paper will consider two methods by which energy can reach a target from a
transmitting platform and in general return again. One method is by direct line-of-sight
from the platform to the target. The second is by considering a path which reflects from
the surface of the earth. With both paths of transmission present at the same time,
there will certainly be phase cancellation and reinforcement of the transmitted energy at
the target. This fact alone means that if this effect is going to be taken into account,
then a precise geometrical analysis is required if phase considerations are to be pre-
served and meaningful. However, the validity of the geometrical representation must
be analyzed in order to adhere to the physical. For when the energy is of a wave length
in the vicinity of one meter, then if the geometrical situation described above is not

presented accurately by precise equations, the end result becomes entirely invalid. To



this end, much time and effort will be extended. Typical properties which must be taken

into account are:

(a)
(b)
(¢)
(d)

Divergence of energy from a spherical reflector.
Effect of the radius of the earth.
Atmospheric variations in the area involved.

The effect of polarization on reflection.

Other properties which will be analyzed are:

(a)
(b)

Reflector irregularities.

Ray tracing validity.

The author will perform an analysis of the above in relation to field strength versus

spacial position from the platform by compiling equations which represent the factors

involved. While this may appear as a mere lask on the surface, if one looks further into

the problem, he soon finds himself with a set of equations which become extremely cum-

bersome to solve without making simplifications which in turn render the results invalid

insofar as phase considerations are concerned. Hence, the author's approach in de-

riving valid equations which are solvable, within the accuracy required, on a digital

computer such as the IBM 7090 will be covered in the paper. The equations finally used

will be discussed, as well as other possible approaches which were rejected for one

reason or another. Of considerable practical interest will be the resulting general com-

puter program to solve the composite equations.



CHAPTER II

FUNDAMENTAL CONCEPTS OF PROPAGATION

An analysis of any airborne equipment will usually involve the properties which
will be discussed in the pages that follow. Consider first the transmission of electro-
magnetic energy in a theoretical free space. This would consist of transmission in a
vacuum medium between objects ) remote from other influences that transmission is

essentially unaffected.

A.  Generalized Philosophy

In general, first to be considered is the isolated radiating antenna itself. Consider
a polar axis of a spherical coordinate system such that its origin is the origin of the
antenna. A point in space relative to the antenna is then characterized by specifying
angles 9 and ¢ with respect to the antenna. 6 may be the zenith angle and ¢ the angle
about the polar axis.

An antenna has radiating properties which are thus specified in terms of 6 and ¢ .
F(0, ¢) may then be defined as the ratio of electric or magnetic field strength in the
(9. ¢) direction to that which occurs in the direction of maximum field strength. Meas-
urements are taken at a distance which is large compared to both the wave length and
dimension of the antenna such that the near field of the antenna is neglected and the

energy transmitted consists of constant phase wave fronts.

Considering radiation from the antenna, Poynting's vector (T’ =E x ﬁ)‘ or the
cross product of the electric and magnetic field, gives the magnitude of the energy flow
per unit area in the direction of propagation when its magnitude is averaged over time.
For the steady state sinusoidal consideration this average power can be expressed in

complex notation as:

P =2 Re(E x H¥Y 1)

av

BO |



The above notation assumes that the incremental section of the radiation can be con-
sidered as a plane wave front, which is true in the far field of the antenna. Utilizing

MKS units, the instantaneous value of Poynting's vector is given as:
P === nOH (2)

where E and H are the instantaneous values of the total electric and magnetic field

strength and:
o = V :0- &« 1207 Ohms impedance of free space (3)
0
_ ~7
Hy ~4Tx10 ' henrys /meter 9
1079

€0~ 367 farads/meter (5)

/40 is called the permeability and ¢ 0 the permittivity. The time average of Poynting's

vector hence degenerates to:

2
= E
e 6
av 2170
as:
E(6,
F(8 .9) - -iqgigl (7
0
P (0.0 | Fo.o) P ®
av av(0)
where T)av 0) is the average power in the direction of maximum transmission.

At this point, it is useful to define an isotropic radiator as an antenna which radiates

equally in all directions, hence for all values of 8 and ¢:
F(8, ¢) = 1.0 9)

For an isotropic radiator, Poynting 's vector is given by the well-known relationship:

(10)



where W1 is the average power radiated by the isotropic element in watts and R is the
distance in question.

The power radiated by a directional antenna can be obtained from Equation (8).
Denote this power as wz. The power in question is found as the surface integral of
Equation (8) or more specifically as:

W= S P (6, ¢)R%do (11
2 av

4r
where the surface in question is a sphere of radius R from the radiating elcmeut with
surface area R2d0' where 0 is the solid angle in steradians as viewed f~rm the

antenna.

With the above in mind, the absolute antenna gain can be defined and obtained. The
absolute antenna gain is defined as the ratio of the radiated power by the isotropic
element required to produce a given value of Poynting's vector at a set distance to the
power radiated by the directional element producing the same value of Poynting's vector
at the same distance in the direction of maximum power radiation. Rewriting Equation

(11) for a directional element yields:

- 4R2P 2
W, = 4R°P_ o |F6, ¢)| do (12)
4T
The absolute antenna gain is hence equal to:
P o
W, Piso S‘ d
G = w = A (13)
t W2 _ 2
P |Fo,¢)| do
av(0) e

By empleying the above definition, §(max) of the directional antenna is equal to iiso

and hence W1 = Gth. This leads to the conclusions that the maximum values of

Poynting's vector for the directional case is equal to:
Wi W G

3 - o2t
P - (14

max g2 47R




As w2 is the transmitted power, the substitution that W2 = Wt can be made. This leads
to an expression for F(o. ¢) by utilizing Equation (8) and making the substitution that

P(mzatx) = 1:,av(O) :

= tht
P (6 9)= —F [F(6.9)
av 4TR’

, 2

(15)

Through the use of the cross product representation for Poynting 's vector, Equation (2),

values of the electric field strength as a function of position are found as:

_ /6OW.G
E(0.9) =V P_ 1207 =———Rt—t— F(8. 9)
E(6.6) = E,F(0. 9) (16)

It should be noted that if the Hertzian dipole or the half-wave doublet are to be considered
as the gain standards, then the values of total gain should be divided by 3/2 and 1.64

respectively.

B. One-Way Transmission

For the preceding information to be of practical use, the transmitted energy must
be received by a receiving element and receiver. If we consider a properly matched
receiver and receiving antenna whichareorientedinadirection for maximum reception,

(1,

the received power Wr can be written as

w =P A (17

where I)av is the value of the received Poynting's vector and Ae the effective cross
section of the receiving antenna. With the wave length of the transmitted energy

expressed in meters (A), the gain of the receiving element is given as:

(18)

[1] 8.A. Schelkunoff, Electromagnetic Waves, Van Nostrand, New York, 1943, Sec. 9.4.




If the receiving and transmitting antennas are of the same polarization and if the
direction of the receiving array is specified relative to the incoming energy in terms of
¢ and ¢', then the received power obtained by Equation (17) as a function of ¢' and ¢'
must be multiplied by the square of the antenna pattern function, F(6', ¢'). Thisleadsto
the following:

35 2
w =l:£&_ |F(0' ¢") lz (19)
r 4 !
or:
= 22
W, GPGA 2 2
wo = T [Fenenl IFe.e
t P4 m4nR
W Gtc;rx2 0
w - 5 |F(O.0)F(8'. 9" | (20)
t (47R)

For the case stated previously where both antennas are aligned for maximum conditions,

Equation (20) degenerates to:

W GG
w3 1)
t (4™R)
Solving for R in Equation (21) results in:
w /G G
R=f 4+ LLtr, 22)
W 4r

This equation may be converted directly to the maximum free-space one-way trans-
mission range or the target range at which a usable energy is received by the receiver
by letting Gr = G(max)' and utilizing the minimum useful receiver power. Equation (22)

wt Gu‘.G'mt;.x
R 0 = w ar A (23)

min

hence is transformed into:

where R0 is the maximum theoretical range. This equation is used frequently as a.
standard of performance.



C. Radar Transmission

As this paper will be ultimately concerned with two-way transmission as well as
one-way transmission, a match for Equation (23) will now be derived. Two-way trans-
mission infers the concept of reflecting transmitted energy by a remote object from the
transmitter and receiving a portion of this reflected energy at the transmitter. This
type of transmissionor radar transmission utilizes the properties of the radar target.

It is first necessary in the development of radar transmission to specify the radar cross
section or back-scattering cross sectional area. Let 0 be the dimension of the back-
scattering area.- It will not be the object of this paper to specify either a mathematical
or experimental determination of 0 but only to assume that its fictional mathematical
value is known. A definition of 0 is the area intercepting that amount of power which,

(21

when isotropically scattered, produces an echo equal to that observed from the target

Utilizing the previous definition, the value of the back-scattered Poynting's vector
at a point from the target is related to ¢ as well as the incident Poynting's vector on the

target in the following manner:

B
P = 29
bs 47rR2
or:
P
o = —b8 452 (25)
P

i
where l_)i is the incident value and Bbs the back-scattered value of the Poynting's vector

respectively. R is the distance from the radar target. In a manner similar to that

previously discussed, the received power by the radar antenna is:

(¢

rol

2 Le

W, = | F (0" 9) (26)

[ P2

47R

(2] D.E. Kerr, Propagation of Short Radio Waves, McGraw-Hill, New York,
1951, p. 33.




The value of the incident Poynting's vector is:

w.G 2
35 tt
P, 5 | F(6.9) |
47R

Assuming that the transmitting and receiving antennas for radar transmission are

identical:
w 2 2 A 0G
e t
7 CIFeal [Feeyl —— (27)
t 47R 47R
where:
G
2 r
= A —
Ae 4r
Substituting the value for Ae yields:
w 2.2 4
r GA o
w - T aa |Fe9l (28)
t (4m R

As before, afree-space radar range is defined as that range which produces a minimum

radar signal which is useful. Solving Equation (28) for this range:

4 wt szzo'
R =% 3
r (4m

R =vl T [e 20
0 Wr47l' 4m (30)

Utilizing the preceding, a free-space coverage factor may be determined. Substituting

4
| F(o. ¢) | (29)

Equation (30) into Equation (29) yields :
R=R, |F(0.9)] (31

This expression in general holds for both one-way and radar transmission. Utilizing

the coverage factor, afree-space coverage diagram may be determined. This coverage
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diagram encloses a volume inside which the electromagnetic field is larger than the

smallest useful value.

D. The Propagation Factor

Up to this point, the free-space condition has been the major consideration. In a
practical system, the coverage of transmitted energy may be largely affected by sur-
rounding physical conditions. If reasonable parameters are used in the equations above
and then the actual ranges determined from experimentation, there will be considerable
discrepancy in the magnitudes of the quantities involved. The main reason for this
discrepancy is that operation in the atmosphere close to the earth does not compare with
the conditions assumed for free-space transmission. In an effort to analyze the true
situation. the free-space relationships derived will not be disregarded but instead they

will be used as the building block in describing the new or actual situation.

Consider first a factor which shall be called the pattern-propagation factor. This
factor is defined as the ratio of the amplitude of the electric field at a given point under
certain conditions to the amplitude of the electric field under the free-space ideal condi-
tions where the beam of the transmitter is directed to the point under consideration. In

equation form, the above is restated as:

E
F=|4 | (32)
0
where F is the propagation factor, E the electric field at the point in question, and E 0

the reference free-space electric field having the same polarization as E. F can be seen
to be entirely independent of internal properties of the transmitter and dependent only

upon the properties of the path of transmission and the directive properties of the antenna.

In the presence of an earth, F is the effect of the following: (1) the diffraction
phenomenon or where the earth's shadow givés rise to diffraction of electromagnetic
energy: (2) the refraction phenomenon or the effects of an inhomogeneous atmosphere
about the earth: and (3) the interference phenomenon which is the effect of the earth re-

flecting and scattering radiation which produces an interference pattern. The fourth
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factor which F takes into account is the directional characteristics of the antenna; or
for a free-space consideration F would be:
F=|Fo ¢)] (33)

Hence, the one-way transmission equation may now be written in terms of the above

effects as:
. GtGrA2 2 2
W Ri |Fr(0',¢')l (39)
t  (47R)

Notable is the fact that F2 is the ratio of the magnitudes of the Poynting's vector at the
point in question to the magnitude of the Poynting's vector whose maximum free-space

value corresponds to the same absolute distance as the point in question.

Not quite so easy to verify is the application of F into the radar range equation in
order to make calculations that are valid for regions other than free space. Using the

theory applied by H. A. Lorentz[ 3l

in the development of the reciprocity theorem it can
be shown that the isotropic source equivalent to the radar target is (Wth/ 41rR2) FZ.
Also, using this theorem it can be proven that the propagation factor squared is the
quantity that converts the free-space transmitted energy into the energy that would come
from the target, if the target-reflected energy were incident on the maximum antenna

pattern of the receiver. Hence, the radar transmission equation can be rewritten as:

wr _ G27\20 4
W, it @9
t 4m R

In Equations (34) and (35) are the theoretical capabilities for determining field
strength calculations in the presence of the earth and its atmosphere. These equations
are subject only to the conditions that the transmitted energy be incident upon either

antenna or target as a plane electromagnetic wave.

While Equations (34) and (35) look relatively easy to solve in nature, it must not
be forgotten that the secret to their practicality is a correct formulation of F. In general,

it is to this desired end that a large portion of this paper will be concerned.

(3] Ibid.. pp. 693-699.
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First consider Figure 1. The presence of the earth can be immediately seen to
produce scattering of the transmitted energy from the transmitter located at a height of
VA 1 above the earth. This gives rise to an interference phenomenon at the receiver or

target located at a height 22 above the earth. From the knowledge of electromagnetic

TARGET ——

DIRECT RAY

HORIZONTAL

ANTENNA
BEAM MAX.

TRANSMITTER

REFLECTION
POINT

ELLIPSOIDAL
EARTH

Figure 1. Ray Representation of Propagation in the Interference Region Above A
Curved Earth
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propagation it is immediately seen that the energy arriving at point (2) in space is made
up of a direct energy wave front and a reflected energy wave front which, due to their
difference in distances traveled. are not of the same phase. Or, in terms of the E and
H vector representation, the vectors representing the direct ray have not made as many
complete revolutions as have the vectors representing the scattered ray. For a more
technical discussion of the theory represented above, the reader is referred to any

(4]

standard text on field and wave theory.

Hence. in view of the preceding, it can be seen that the path length difference
between the direct transmitted energy and the scattered transmitted energy received by
the receiver in the case of one-way transmission,or the equal resulting effect in the case
of a radar type transmission,must be considered as a component part of F. Or more
explicitly. in order to show the qualitative properties of the pattern-propagation factor
T in the interference region,consider again the situation shown as Figure 1. Here will
be seen the transmitting antenna having a vertical plane pattern of F( ¢) located at a
height Z1 above a spherical earth. The angles ol and ¢2 are therefore needed to de-
termine the antenna patterns f(r:)l) and f((,‘)z) in the direction of the direct and scattered
rays respectively. Note that it has been assumed that the energy wave front can be
represented as a pencil-like ray or composed of vectors normal to the wave fronts and
in the direction of propagation. The validity of the assumption will be discussed at a

later time.

Consider that in the direction of maximum propagation of the antenna the electro-

magnetic field due to the direct ray is E ;. Then it follows that from the definition of

4
f(¢) = F(6.¢) that the value of the direct ray at an angle ¢>1 (where the horizontal

dependence has been omitted) is:
E = E (o) (36)

where Ol and q>2 are relative to the normal of Zl. The distance traveled by the direct

ray to the receiving antenna is RZ'

[4] 8. Ramo and J.R. Whinnery. Fields and Waves in Modern Radio. John Wiley and
Sons. New York, 1953, pp. 270-314.
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In a similar manner, the value of the reflected wave as it leaves the transmitting

antenna is:

(37

The path length of the reflected or scattered ray is R 1 + R3. The direct and scattered
rays thus travel a path length difference of:
A = + -
R=R 1 R3 R 9 (38)
where AR > 0 for all locations of the receiver in the interference region. Because
of this path length difference, the scattered ray is retarded in phase by a value (A R)A
where A is the quantity which converts the path length difference into its equivalent

difference in terms of the wave length of the propagated energy.

The reflected wave also undergoes a phase retardation because it is reflecting from
the surface of the earth. Not only does the reflected wave suffer retardation but its
magnitude is affected by the reflection. At this point, define I' as the ratio of the inci-
dent field, electric or magnetic, to the reflected field. This is a complex quantity
expressing both the phase and magnitude changes suffered by a wave of energy reflecting

from the surface of the earth. Or, in terms of symbolic complex notation:
F=pc ¢

where p expresses the fraction of the incident field that is reflected and ¢ is the angle

by which the incident energy is retarded.

If the difference in path lengths is expressed as the equivalent phase retardation,
A(AR),and ¢ expressed in a similar manner, then the total phase retardation of the

reflected complex field relative to the direct complex field is given as:
Ay = AAR) + ¢ (39)
where A ) expresses the total phase retardation.

If we take into account the divergence of energy due to its incidence on a spherical

reflector and this quantity is denoted as D, then the total electric field strength at the
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receiving point located at Z_ above the earth can be expressed us:

2

'i:t=i:r+id (40)

Or in terms of our previous notation:

-iA(AR)

E, = Eo[f(qbl) + I'De f(¢>2)] (41)

Hence, within its limitations and assumptions, the ratio of E to E 0 gives the interference

pattern as formed in space, or the pattern propagation factor.

By limitations and assumptions is meant a wide scattering of theoretical and
physical effects which for propagation in an atmosphere have been neglected in the pre-
vious analysis. Most of these effects will be discussed in Chapter V of this paper.
However, there are two factors which will be mentioned at this point as no further
consideration will be made of them. First, at the receiving point,the energy wave fronts
will not be arriving at the same directions as has been assumed in the preceding analysis.
The direct and scattered wave fronts will in actuality be traveling in slightly different
directions. However, as found from experimentation. this is important only when the
energy wave front is vertically polarized and the reflection and incident angles with
respect to the earth differ to a large extent. In the paper these angles will be made or
assumed equal according to the well known law:

v ' ’
1 . "2
Slnﬂ’l Slnaz

where v 1 and v o are the velocities of propagation in the incident and reflected mediums

and @, and o 2 the incident and reflected angles. As the incident and reflected waves

are traveling in the same medium, v 157 and hence:

a =a, (42)

The second factor which will be neglected is the small spatial attenuation difference
encountered by the direct and reflected energy. In the large majority of practical cases,

this effect has been found to be negligible sl .

[5] L.N. Ridenour, Radar System Engineering, McGraw-Hill, New York, 1947, pp. 58-62.
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CHAPTER III

THE FORMULATION OF THE DIFFERENCE BETWEEN
THE PHASE OF DIRECT AND SCATTERED ENERGY DUE
TO PATH LENGTH DIFFERENCE — AR

Referring to Equation (41), it is seen that one factor which must be found is AR.
Mosl uf the remainder of this paper will be concerned with finding these variable para-

meters as a function of Zz, 21 and Rz. The reason for this is that the desired end

result is a coverage diagram represented in terms of Z2

parameter. There has been considerable effort devoted by various concerns and

and Rz, with Z1 as a fixed

individuals in the determining of AR as a function of the previously mentioned variables.
Some of these methods will now be presented as a background for the final method used

in this paper.

A. The Exact Equations

The geometrical situation described in Figure 1 on page 12 can be represented in

exact forms by the following set of equations:

a = @, (43)
Zi
Ei =1+ N i=1,2 (an intervening parameter) (44)
e
R, = A \/E2+E2-2EEcoso (45)
2 e 1 2 172 1
4 2 2 3 2, .2 2.2 2
- (4E t 3 + + + -
4E1Ezcos 02 (-11:1}32 4E1E2cos 01)c05 92 (E1 E2 2E1E2cos 01 4E1E2)cos 92
+(4E Ezcos2 0. +2E Ezsin2 0.+ 4E2E cos 0 )cos 6 46
12 1 172 1 12 P 2 (46)
2.2 .2 2 2 2
+ i - - -9 =
(ElEzsm 01 E2 cos 01 E1 -ElEzcos 01) 0

"o + - 47
Z1 (Ae Zl)coso2 Ae (47)
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1= + -
Z2 (Ae Zz)coso Ae

2 2
= + = - Al [
d d1 d2 R2 (Z2 Zl) See Equation (58)

(%
xpz = tan T
i
t 4 gy
" =tan_1 (Zl ZZ)
2 d

A1=/A

2 .2 2
= i + +
A2 f Aesm zpz 2AeZ2 Z2

[

2 2
incy +¢ +
sin dz .).Aez1 Z1

R1 = A1 - Aesmzpz
R3 = A2 - Aesmzp2
AR=R_+ R3 -R

AR=A_+ - i
R A1 A2 2Aesmzp2

: / 2
= + + +
L / 2A 2, + 2] 2AZ, * Z,

Zl

1
= + i =3 PR S
d1 (Ae Zl)sme2 T
1 2

Zl

2
= + = _—
d2 (Ae Zz)sine r Z'1+Z'2

(48)

(49)

(50)

(51)

(52)

(53

(59

(55)

(56)

(57)

(58)
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These equations are referred to as exact in that they represent the geometrical
situation represented by Figure 1. Theoretically they may not be exact because they
deviate from what is physically happening or because they cannot be solved to the re-
quired precision. The derivations of all formulae are straightforward from the

geometrical viewpoint and may be checked by the reader if desired.

The use and practical application of these equations may be questioned. For an

explicit solution of AR as a function of Zl' Z2 and R2 one would first proceed to solve

the quadratic in cos 02 from Equation (46). This would give the cos 02 as a function of

z X Z2, and cos 01 . Equation (45) would then be solved for cos 91 . Making appro-

priate substitutions, AR as a function Zl, Z_ and Rz can then be determined. Equation

(57) gives a measure of the section in which f.he equations are valid, or Z2 is in the
interference region. This means that if R2 is greater than L, then Z2 has a minimum
value greater than zero. While theoretically the preceding is possibl, at its best it is
very complicated. Also, in order to maintain the values R 1 and R 3 to the necessary
degree of precision in terms of the wave length of propagation involved, the number of

accurate digits one is required to maintain can be seen to be unwieldy.

Variations in the exact geometrical representation or equations have been derived
by various writers. Most of these involve implicit relations which indeed are easier io
work with than those described previously but their use is limited in the plotting of a
coverage diagram in terms of the parameters previously stated. The University of
Mlchiganls] (7] have both contributed

concepts not generally used in the preceding equations. Equation (12) in the Fairchild

and the Fairchild Engine and Airplane Corporation

report is questionable, should reference be made to this paper. The author has not,

however, proved it incorrect even though dimensional analysis indicates an error.

(6] T.B. Curtz, M.L. Barasch, et al, "Analysis of Padar and Its Modifications —
Final Report, " No. 2476-1-F, April, 1956.

[7] "Padar Investigation — Final Report, " No. 64R-10, June, 1956.
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B. The Cubic in ry

Admittedly, there are simplifications that can be made in the so-called "exact"

equations. One of these may be termed as a cubic in I Consider the following

approximation:
<<
Z1 and Z2 Ae (59)
ry and r, <« Ae (60)
Therefore:
2
B!
Z1 o Zl " 3A (61)
e
2
T2
Z'2 =] Z2 STy (62)
e
1% T dza-r?,dzr (63)
‘ (Z,+2Z,) r2 + r2 ?
-1 1 2 1 72
¥, = tan 1 - TR s (64)
= e( 1 2)
2
r. -2A Z r . -2A 2
e 1 1 e 1 .
+ + 24 7
r2 =3 or or ZAe.f_Z (65)
1 1
2r3—3rr2+(r-2AZ -2A Z)r. *2A Z r=0 (66)
1 1 e 1 e 2'1 el ~

Equations (61) and (62) follow directly from Equations (47) and (48) by letting

92
cos fax 1 - - Likewise, Equation (63) results from Equations (58) and (49) by
letting sinf = 0. Equation (64) results from Equation (50) utilizing Equations (61), (62),
and (63). Equations (65) and (66) follow from (64) assuming that (64) is valid. Equation
(66) has the solution:
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- Pcos 3‘%—11 g (67)

2]
n
[

where:

2
2y Az, +z)+ (5
ol a7 () o

/5

o= COS-J 2A(Zy - 2Z)r |
3
S S P

1 2

(69)

For Z1 < Z_ a similar equation can be found in terms of Ty This solution is essentially

2
that given by Kerr (8) on page 113 except for the sign change in:

r1=§ + P cos iﬂs—")-% (70)

This can be shown to be incorrect if we observe that as Z1 = 22, the following

inequalities must hold:

[ ]
r el
r -3 =0 (71)
cos ¢ =0. (72)
However, as:
270° > ¢ >90°
(73)
+
150° > 3% >90°
+
cos 3@3—")-§s 0 (74)

[ 8] Kerr, op. cit., p. 113.
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Hence for (71) to hold true, Equation (70) must be incorrect and the form must be that
of Equation (67). The law of cosines may be invoked to find R1 and Ra.

2_ .2 2
= + + - + ~
RU=A_+ (A *2)" -2A (A +Z)cos6,

O
1 A A
e

2 2 2
= + + - +
R3 Ae (Ae Z2) 2Ae(Ae Zz)cos 0

Therefore:

r

2 2 1
= _ + + + - + —_
AR=-R, / At (A *2Z) -2A (A +Z )cos )

r-r

2 2 1
+ + + - +
%&e (A, *2,) -2A (A *Z)cos -

It should he noted that the cubic in r 1 does not represent a full third-order approxi-
mation to r. To obtain this, the third-order term in the expansion of sin # or sin 01
must be used in the approximation of d1 and dz. This will not only change the coeffi-
cient of r 1 but will also change the remaining coefficients. However, as Z 1 / Ae and
Zz/ Ae are small, these changes are unimportant. Theoretically, these equations
break down to the largest extent at the extreme conditions or where Z2 is too large or

where R2 is at either extreme.

Considerable work has been done on obtaining the solution to the cubic in r_.

Transformations have been found which normalize the variables in such a way that the

(75)

(76)

(77)

(78)

(79)
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computing required for a solution has been reduced considerably. The application of this

{9

transformation is recommended and may be found in Fishbhack and Burrows and

Atwoodl 1)

C. The Flat Earth Approximation

A third method of attack in determining AR in the interference region can be

found by assuming a flat earthor an earth whose radius is infinite. Under this

assumption:
L 1 =
Z1 Z1 Z2 22 (80)
- -1
tan 1 Z1 tan Z2
Y = A T (81)
1 2
Z +2Z
-1 1 2
= A ———— 2
¥, = tan " (82)

If Zl/r1 and Zz/r2 are assumed small, then:

N
[ -]

R §r1+——er (83)

=

N
[

R r + -~ or (84)

w
[ ]
[ 2]
e ]
[\
o

(85)

[9] W.T. Fishback, "Simplified Methods of Field Intensity Calculations in the
Interference Region, " Report No. 461, 1943.

[10] C.R. Burrows and S.S. Atwood, Radio Wave Propagation, Academic Press,
New York, 1949.
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Zr
21
r, & — (86)
1
22 .2
AR = i 2 (87)

Equation (87) can be seen from the fact that pure geometrical deduction indicates:

2 2
= + -
R (2, - Z)

2 2
B *RY =/ 1 *(Zy*2))

Expanding R2 and (R 1 +R 3) by the binomial theorem and subtracting yields:

22 72 22 + Z2 3Z4 + 102222 + 3Z4 -
_ 12 1 2 1 12 2
AR=— S \1-——5 y
ar 8r
or:
22122
AR = (Assuming Remaining Terms Small)

r

Needless to say. these equations break down everywhere that the previous equations
did plus their additional inherent loss of accuracy brought about hy the extended
assumptions and simplifications. Notable, however, is that the cubic in r is now re-
placed by (85) and (86). Of particular interest is the fact that these equations break
down very rapidly in the region where R 2 approaches or is greater than L and 22 is

small.

Reference will be made in a later section of the paper as to the quantitative

magnitudes of the errors involved in these and the previous assumptions.
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D.  The Author's Analysis — The Exact Transcendental Equations

Three methods of determining AR have so far been presented. Each succeeding
approach is simpler in terms of the computations required to obtain a result. However,
the simplifications are obtained at an increasing loss of accuracy. It is the author's
intent in this section to derive equations which will yield the desired AR to a high
degree of accuracy comparable to that obtained theoretically by the fourth order "exact"

equations but at the same time not to have the equations too unwieldy.

Zl' XY
J CURVED EARTH %
Z;
Vi
<k
Q
as
\
L
Ne N
6,
8 Z; |
L
R Z, X 3,0

Figure 2. Vector Representation of Interference Region
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Consider Figure 2 which is essentially the same as Figure 1 drawn in vector

notation. The vectors -\_’1, -\72. and \_13 may be expressed in the following manner:

{;1 =(x - Rcos0)i+ (y - Rsin8)j (88)
\72 = (Rcos 0)i + (R sin 8)j (89)
\73 = (x, - Rcos 0)i + (-Rsin 0); (90)

Forming the following scalar or dot products results in:

Vl . Vz = XRcos 8 - Rocos® 6 + Rysin 0 - REsin’ 6

= xRcos 0+ yRsing - R2 (sin2 g+ cos2 ) 91)

=choso+yRsin0-R2
Y =x3RcosG—R2 cos20—R2sin29

3 2

= st cos § - R2 (sin2 6+ cos2 6) (92)

i

xaRcos 0 - RZ

However. by the definition of the scalar or dot product of two vectors:
VY, = [V1' (Vzlcosql (93)

V3 ) V2 = |V3| |V2|cosoz2 (94)

=chost9+yRsinO—R2
1 v, |

v, lcosa (95)



But:

or:

cosa, =

cos Ot2 =

Iv,I =R
|V1 |co:soz1 = xcos 6 + ysinf - R
IVal cos @, = X,08 6-R

xcos 6 + ysin 8 - R

cosq, =
1
v, |
xscos 6-R
cosa, = v
3

xcos 0 +ysin 6 - R

1 l/ o 2
(x -Rcos )" + (y - Rsin 9)

x3cos 0-R

‘/(x3 - Rcos 0)2 + (R sin 9)2

Using the following three identities:

It is easily proven that:

= +

(1) x (R Zl) cosol,
= + i

@) vy R*Z)sinb, ,
= +

(3) Xq R Z2

(R*+Z)K-2R+ RZ/(R + Z.)K

7

COS « 2
R+ 21)1/1( -2R+*R/R+ zZ,)K

(a+ Zl/R)K +R/R+ Z,)K-2

a+ Zl/R)l/K +R/(R + Z)K-2

27

(96)

G

(98)

(99)

(100)

(101)

(102)

(103)



28

where K = cos (0 - 01)

(R+Z,)cos 6 - 2R + Rz/(R + 2,)cos

cos (12 = 2
R+ 22)/cos 6-2R+R°/R + Z,)cos 0

a+ ZZ/R)cos 0+R/(R+ Z,)cos 6-2

(a+ Zz/R)l/cos 0+R/(R+ Z,)cos 0 -2 (104)

The previous equations for al and a2 are at their best not as simple as might be desired.

Assuming that 0 1 is known, which will be proven at a later time, and knowing from the

2 . .
previous discussion that coszcu2 = COoSs al. the previous two equations can theoretically

be solved for 8, hence o and . However, the solution for 6 is an implicit relationship.

It would, hence, be desirable to at least attempt to simplify Equations (103) and (104).

With this goal in mind, consider the following triple scalar product:

VyxV, - k= !vzl lvalsmaz (105)
VyxV - k= Iv2| iVllsmal (106)
Expanding (105):

V. xV -k = xa-Rcoso -Rsinf 0

Rcos 8 Rsin 8 0

(107)
= (x3 - Rcos 6) (Rsin ) + Rcos 9(Rsin 8)

= x3 Rsin 0

where k represents the unit vector in the third dimension.
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<l
>
<l
~
il

Rcos @ R sin6 0

x-Rcosé y-Rsinéd 0

0 0 1
(108)
= Rcosf(y -Rsind) - (x - Rcos ) (Rsin §)
= Rycos§ -xRsiné
Utilizing the definition of the triple scalar product:
- —_ . o
V,xV, - k= |V1| |V2| (1) (sina,) (cos 0')
(109)
= IVll |V2| sina,
- = - _ o
V,xV,  k Ivsl Ivzl (1) (-sina,) (cos 0)
(110)

= |V3| |V2| (—sinaz)

Note:
V1 X V2 # V2 X Vl
But:
V1 xV2 = - (V2 le)
Rewriting (93) and (94):
3 -
- _3 2
|V3| |V2| cosq,
2
_ 1 2
|Vll [V2| cosa
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Therefore :

1

tana
Utilizing Equations (91), (92). (107), and (108):

_ Rycos § - xRsin 6

tana 2
xRcos 8 - yRsin6 - R
. _Ycosf-xsinb
Xxcos@+ysind - R
-x_Rsin@
~ 3
tanotz = 2
x_Rcos @ -R
3
i} —xasine
9 -
xacos R
As:
x =

+

(R Zl) cosol‘
= + i

y (R Zl) sm01.

= +
X R22

(111)

(112)

(113)

(114)

(115)

(116)
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and using the trigonometric identities for the sine and cosine of the sum of two angles,

the following is obtained:

sin(0, - 0)

tana, = cos(6 - 8) -RAR*Z) (117)
in 8

tana = n (118)

-cos 6 +R/AR + ZZ)

As transcendental equations, these equations are relatively simple in view of the pre-
vious results. From the previous derivations, the absolute value of V 1 (or Rl) and

the absolute value of V 3 (or R3) can be determined. From Equations (97) and (98):

xcos 8 +ysinf - R

IVlI - cos a (119)
1
X408 #-R
Vol = ~eosa (120
2

Substituting in the value for x, y and x x

(R+*+ Z,)cos
1 cosoz1

cos@+ R+ Zl)sinolsino-R

(R *+Z,)cos 6 - R
v | =

3 cos az

Let
Z = cos (01 - 6)

R=A
e
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Then:

[(z -+ (2, x Z)/Ae)] l
5

'V1| ) R1 - cosoz1 Ae (121)
[(c050 - 1) + (Z,cos 9)/Ae] l
V.| =R, = A (122)
3 3 cosot2 s e

To complete the analysis of AR, it is now necessary to derive an expression for
6 R This is a relatively simple procedure as it results directly from the solution of

an oblique triangle. Given the following triangle denoted as Figure 3:

b

Figure 3. Triangle Solution of 8, in General Terms

the angle included between two known sides b + ¢ may be found as:

a=2tan’1(sfa)

where:

s‘—‘%(a*b’fc)

r= (s -a)(s - b(s - ¢)
]
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For the situation pictured in Figure1 :

-R +7Z +
2A -R,+2 +2,

§ = ~ (123)
(s-RNs-A -Z)s-A -2Z)
r=\/7 2 es 1 e 2 (124)
) (5-A -Z)s-A -2)
8 =2tan1f e 1 e 2 (125)
1
(s -R,)S

The logical procedure to follow when solving for A R from these equations is to first

solve Equations (123), (124) and (125) knowing Ae, R2

for 01, then Equations (117) and (118) may be solved for a and a,. Equation (121)

, 2 1 and ZZ' Having once solved

and Equation (122) may then be solved directly for R1 and R3. AR is then found as:

AR = + -
R Rl R3 R2

The only difficulty of any consequence when solving these equations when compared
with the previous exact formulations lies in the solution of Equations (117) and (118). It
has been found by the author that these equations are solved rapidly by using the following

technique. First, calculate a value of zpz by using the flat earth approximation:

z2
= = 26
tan ;bz Z1 R (126)
2
by the approximation r R2:
r, = ZZ (127)
2 tan y,
2
r
_2
6= A (128)

®
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Having thus found an approximate value for 6, calculate the tangenis of al, and az by

Equations (117) and (118). Then find the difference between the tangents of al and az

and call this D. Assuming that D # 0, then the following may be stated, assuming a

flat earth:
r r
2E o u (e )
1 2 1 1 2
r 1 1
D= 5~ - 6A <—+—) (129)
Z1 e Z1 Z2

Assume that r/ Z, is the factor which is correct and that 8(A ) a/ z, + 1/ z,) is

causing D to deviate from zero. The following then can be said:

r 1 1
06=— -0 A [+ = (130)
Z1 0e < Z1 22 )
where 0 0 is the corrected value of 6. Subtracting Equation (130) from Equation (129)
yields:
1 1 1 1
0 A <—+—): D+ oA (—+—>
Z
0e 1 Z2 e Z1 22
or:
b .
g =) — <+ 6 (131)

From Equation (131) a new value of the tangents of «_ and 012 may be determined. If

1
the difference of the tangents of these new angles differs from zero within the accuracy

being carried out. then the author suggests the use of the following technique.

First, assume a straight line variation for the difference of the tangents of al

and a, at a proximity of the reflecting region of interest. Refer to Figure 4.
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Y
:N+ 8, 4,
Z
A v 8,4,
-]
g X
z RADIA!
g \ 6 (RADIANS)
<
A
4 N
STRAIGHT-LINE
APPROXIMATION
ASSUMED IN

THIS DIRECTION

Figure 4. Straight Line Approximation of the Difference in the Tangents
of @y and a, vs. the Angle ¢ .
In essence, the previous two equations have given the two noted points 9 2A 2 and 6 1 A X
From theory stated previously, it is desired to have A 0 for absolute accuracy.

Hence, where M is the slope of the line and B the 0 intercept:
0=Mé+B (132)
where

(Al - A2)

(0, -0

M
2)

=A -
B 2 M02

Solving for the value of 6 = 8 0 which will make « 1% 7 0 yields:

A0, -0)
22 L ., (133)

Sy e e
0 2A1 2

where in general:

A2 = (tanoz1 - tanuz) for the flat earth approximation.
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- tana,) for the incremented flat earth approximation or from

A 1 = (tana
Equation (131).

1

] 1 = the value of 9 obtained from the flat earth approximation.

(] 2 = the value of 9 obtained from the incremented fiat earth approximation or
from Equation (131).

The above procedure may be repeated until the desired degree of accuracy is obtained

by making the appropriate substitutions for A1 y&_, 0, and 02 for each pass through

the approximations. Theoretically, any desired dzegrele of accuracy may be obtained.

In practice, the author has found the above procedure to converge very rapidly. In
general, within a range of three hundred meters and with altitudes above a few meters,
the values of the two tangents can be brought to ten to twelve decimal places of accuracy
by no more than six repeated approximations of Equation (133). For values of Z 1 and

Z 9 above two thousand feet the convergence appears much more rapidly.

The preceding equations, therefore, provide a method within the accuracy of the
geometrical framework, by which AR may be determined to within any theoretical
desired accuracy ranging from the flat earth assumption to the exact equations. Ad-
mittedly, the labor involved increases with the desired accuracy. But, seldom are the
flat earth approximations within the realm of reality for a physical situation, especially
when the transmitted energy in the interference region is of a wavelength in the vicinity
of ten to one hundred centimeters. This is especially true for small values of Z 9"

Also obtained has been an increase in the accuracy of AR for a specified number of
significant digits carried in the calculation. For all calculations carried out in meters,
the analysis of AR by the method outlined under the heading of the cubic in r will re-
quire twenty decimal digits of accuracy to maintain AR accurate to the nearest
one-hundredth of a meter within the interference region previously covered. The
author's approach requires approximately twelve decimal digits of accuracy to maintain
the same information. The author's approach does not make any assumptions such as

are made in the evaluation of the cubic in T hence it is inherently more accurate.
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CHAPTER IV

PROPAGATION FACTOR COMPONENTS OTHER THAN AR

Having spent so much effort in obtaining & R, which was previously shown to be
a component of F, one might reasonahly wonder if it might not have heen hetter to find
out what other components made up the factor F . If they proved to demand a mul’i -
plicity of the work previously described, then the analysis of & R might have been over-
refined. The overall validity of the factor F can be no hetter than its weakest constitu-
ent. Luckily, however, the determining of A R is the major stumbling hlock in finding

the component parts of F.

A. The Complex Coefficient of Reflection

Equation (41) indicates that a second factor which must be determined is T .
This factor takes into account the reflections of waves from the earth's surface. The

reflection factor was previously defined as:

T = e -i¢

If the electromagnetic waves incident to the reflector are horizontally polarized, then
T‘h is defined as the ratio of reflected to incident electric field or the ratio of the verti-
cal components of thc magnetic field. The ratio of reflected to incident horizontal
components of the magnetic field is —T‘h. For vertically polarized waves -I-‘v is defined
as the ratio of reflected to incident magnetic field. The ratio of the vertical components
of the electric field or minus the ratio of the horizontal components is likewise equal
to f‘v.

From these definitions, Fresnel's equation for the smooth plane earth can he

derived:

. 2 z__ 2
= -9, ’ (Kl/ K) siny, J(Kl/ K)"-cos™ y,
= poe - (134)
v v K./K > sin w‘[K/K)z—cos2
(K, /K" singy + J(K,/ K, Iy
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2 2
-i¢ sinw-/(x/x) - cos
T =p ¢ = 2 1 0 2 (135)

2 2
8in zpz + ﬂKI/KO) ~ cos zpz

The author will not derive these equations here as they may be found in any standard

(11)

work A variable in these equations is Rl where Ri is defined as the propagation

factor of the earth:

[

R1 = wzue ~ jWEo (136)

where j = N1, w is the frequency of the propagating energy, u the permeability of the
earth expressed in henries per meter, ¢ the conductivity of the earth in ohms per meter
and ¢ the complex dielectric constant of the earth in farads per meter. The properties

of the earth are expressed as relative values.

The variable Ko is the square root of the propagation factor for air which for the

air at the surface of the earth will be assumed approximately equal to that of free

space.
2 2
K = @ Hpeg (137

where u, and ¢ are the permeability and dielectric constants respectively for free

0
space. The permeability of the earth can essentially be said to be equal to that of free

- 2
space. Hence, in view of the above (K1 / Ko) can be written as follows:

2 _ ) o
(Kl/Ko) —e/eo—Jo/weO—el jeg = €, (138)

The quantity /¢ 0 is the usual dielectric quantity commonly listed in tables for dielec-
tric materials and ?c is called the complex dielectric constant. In terms of the MKS

system of units:

= 0 = AC
€ /weo 60 (139)

{11} J.A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941, Secs.
9.4and 9.9.
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- 2
where A is the wavelength of propagation expressed in meters. Hence, (Kl/ Ko) can

be simplified to:

o —

T = -3 AC 140
€, =€ j60 (140)

HORIZONTAL POLARIZATION

VERTICAL POLARIZATION

y —»

N
N E]

VARIATION OF MAGNITUDE

»

\

HORIZONTAL POLARIZATION

VERTICAL POLARIZATION

VARIATION ~OF ANGLE -

Figure 5. Variations of Complex Coefficient of Reflection With Incident
Angle y 2°
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In general, the expected behavior of Equations (134) and (135) can best be
described with few words and the use of Figure 5.

B.  The Divergence Factor

A third factor which must be determined is D as seen from Equation (41). This
factor takes into account that the electromagnetic energy is weakened upon reflection

from a spherical earth by a divergence of the concentration of the energy. The

EARTH
SURFACE

FICTITIOUS CENTER

Figure 6. Curved Earth Geometry for Computation of the Divergence Factor
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following analysis will help to clarify the general concept involved. Reference should
be made to Figure 6. This analysis was first carried out in detail by van der Pol and
[12]

Bremmer in a detailed analysis of defraction of waves by a spherical conductor.

The concept is based upon the principle of comparing the density of the reflected
rays from the earth or sphere with those that would have been present had reflection
occurred from a plane reflector. The field strength difference is proportional to the
square root of the ray intensity difference. The analysis is carried out by comparing
the cross section of a cone obtained from a spherical reflection with that obtained from

reflection from a flat conductor.

The rays leaving the transmitting antenna have an effective cross-sectional area
of:

2
R_ siny, dy, do (141)

where « is measured in a plane perpendicular to the plane of paper and Rs is the
straight line distance from the antenna at Z1 to the antenna at ZZ. Reflection from a

plane earth would result in an equivalent cross-sectional area of rays equal to:

(R, + R3)2 sin y; dy, de (142)

This is because the reflective path length appears from an image directly below the
transmitting antenna at a point -Z 1 The cross-sectional area of the rays in the spherical

case is 8, or 8, cos ¢3. From the geometry, s, may be written as (Ae + Z2) sin 6dé da.

Hence, the ratio of the cross-sectional areas may be expressed as:

2
B (R1 + Ra) sin zpl dzp1 da
y = 5 (143)
(A, *Z,) sinfcos y ,doda

[12] B. van der Pol and H. Bremmer, "Further Note on the Propagation of Radio Wave
Over a Finitely Conducting Spherical Earth," Phil. Mag., No. 182, March 1939.

o



Or, the divergence factor is equal to:

Rl +R3 slnxpl dwl
D=yv = Ae + Z2 sancoswadO (144)

Expressing d 8 in terms of zpl and 6 permits D to be expressed in the following con-

venient manner. Reference may be made to the original works for the details involved.

A® +R) /[ siny cosy
D= e 1 2 2 2 (145)

/ g(Ae + ZZ)RI cos dS + (Ae + Zl)R3 cos zjrl s (Ae + Zl)(Ae + Zz)sino

Equation (145) is a function of the variables previously expressed as desirable. While
it may be slightly unwieldy, the author has chosen to leave it in its present form so

as to be of the same order of exactness as the previously derived expressions for AR.
In general, D is seen to have its smallest value when the reflected energy approaches

a grazing angle of incidence. As ¢2 decreases, D will approach unity.

C. The Implementing Expressions

It now remains for the functions which implement the previous expression to be
derived. Referring again to Figure 1, the tangent line designated as L is needed to
determine when the functions are valid. By this it is meant that when 22 is located
within the interference region or above line-of-sight of the transmitter, then the pre-

vious equations are valid. If the value of Z_ as combined with a value of R 9 places the

receiver or target out of sight of the transx:itter, then the equations are not valid. Note
that a line-of-sight correspondence between the two is also a degenerate situation. For
a given value of transmitter height, the distance to the horizon may be found in the
following manner. From Figure 1, it will be seen that a radius vector drawn from the
center of the spherical earth intersects the tangent ray from a height Z1 such that the
angle between these two is equal to ninety degrees. Hence, the vector whose magnitude

equals the radius of the earth, the tangent ray, and the vector from the center of the
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earth to the transmitter form a right triangle. Therefore, the distance from the trans-

mitter to the horizon can be expressed in the following manner:

2 2
dh:\/(zl+Ae) “Ae (146)

If the value of RZ' an independent variable, is greater than d.h, it is required to know
at what height Zz, the receiver or target, must be in order that it falls into the inter-
ference region or where the equations are valid. Consider the limiting case where R2
is at some point tangent to the surface of the earth. Call the distance from the point
of tangency to the projected vector from the center of the earth to the receiver or

target,d %
d =R, -d (47)
A radius vector from the earth's center to the tangent point is again at right angles to

dh or (R3 - dh). Hence, the intersection of the vector from the earth's center to the

receiver by the vector d1 occurs at a magnitude of the target~directed vector equal to

d2:
.2 2
dZ - Ae ¥ d1
The minimum height 22 in the interference region is, therefore:
2 2
Z =z -
9 = Ae + Ae + d1 (148)

In order to specify f( ¢1) and £( ¢2) as a function of RZ’ Z_, and Zz, the following

1
analysis may be carried out in reference to Figure 7 which is taken directly from
Figure 1. The analysis involves first the derivation of 6 .  From an oblique triangle
consideration define a variable T and U as follows:
A +Z + +
e Pt TRy EA YRy

T = > = > (149)

. :/(T “R)NT-ANT-A_-2Z,)
T

(150)
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X

Figure 7. Excerpt from Figure 1 Used in the Derivation
of &.

Hence from the preceding:

- -1_ U
6= 2tan T-A -2

e 2

2 j (T -R)(T -ANT-A_-2)
2 tan

2
(T - A - Z,)

/(T R)T - A)
6= 2tan T -A_ -2 (151)




Hence, Equations (149) and (151) serve to solve for 4, having previously determined

R3' The following relationships follow directly from Figure 1:

Yy=T- 6-8

$,=T-6-6

4
$=-(37 Yy

The value of ¥ in Figure 1 is determined in a manner similar to Equation (151):

J(s R)(S - R)
y =2tan_ S - R)

where

Hence¢1=7 - le

(S-R)(S-R)
el 2 Vo
¢, = 2tan \/ S(S—Rs) |¢2 |
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(152)

(153)

(154)

(155)

(156)

(157)

Within the preceding framework are the capabilities of analyzing an airborne-type

transmitter with respect to its pattern of coverage. The analysis has been carried vut

by the method of ray analysis of the electromagnetic energy leaving the transmitting

antenna. The equations are, of course, subject to their noted limitations.
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CHAPTER V
LIMITATIONS OF THE ANALYSIS

At the start of this paper, the author mentioned that all equations were based
upon the ability to represent electromagnetic waves by straight lines or rays. The
author also indicated that this assumption may not always be exact or true. In the pre-
vious analysis, it was assumed that at all times the rays appear as normals to the
surfaces of constant phase of the electromagnetic wavefronts. However, in the vicinity
of sharp corners and in regions where the rays exhibit odd properties because of re-
fraction. such as at a cusp, then the energy can no longer be said to follow the rays and
geometrical optics fail to give results which are truly meaningful. At this point, it is
required to analyze the energy by introducing the field of physical optics. Physical
optics is not the theme of this paper but the following analysis should indicate to the
reader where the previous analysis does break down and if it is important in the general
area of pattern coverage. Also covered in this section will be surface roughness and

the effect of the index of refraction of the atmosphere.

A. The Equation of the Ray

Geometrical optics may be invoked to analyze the situation where the atmosphere
is non-homogeneous. In a homogeneous atmosphere, as previously assumed, the rays
indeed represent the wavefronts and their direction of travel. In any atmosphere,

Maxwell ' s equations apply, and hence they will be stated for a desired end resuit:

v.D

=p (158)
V.B=0 (159)
- 9B

VxE=--ét— (160)
— - 0D

VXH=0E+3_C- (161)

B= uH (162)
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D=¢E (163)

The parameters are defined as follows: D is the electric flux density, p is the charge
density at the point in question, B is the magnetic flux density, E is the electric field
intensity, H is the magnetic field intensity, u is the permeability, and ¢ the dielectric

constant. In free space O equals zero and K and ¢ are not a function of time, and

hence:
= oH
VXE=-#3¢ (164)
- 9
VxH=€¢ 37 - (165)
Then, the wave equations of free space may be determined:
- oH
Vx(VxE)=- 4Vx o
= 2= 9 -
VV- E) -V E=-y-3T(VxH)
But:
V(V-E)=0
Therefore:
2—
2— "E
VIE=pe —, (166)
at
In a similar manner:
2=
2— 9
VPH = pe —H (167)
at?

Equations (166) and (167) are the wave equations in free space. If we assume that all of
jwt
) can be used

the propagated energy can be represented in a sinusoidal form, then ¢
to represent the time variations of all fields and currents involved. The second time
derivative can hence be represented by -w2 where wis the radian frequency of the

propagated wave:

V2E = uew’E (168)
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or:

2 2

V'H = pew H (169)
It now behooves us to find a solution to these equations. In general, the solution may
be sought in the following form. Either Equation (168) or (169) may be considered.

Considering Equation (169), the solution is:

H=Acl“S (170)
A and S are real functions of position. If Equation (170) is substituted into Equation
(169) and the real and imaginary parts are equated to zero, the following results:
2
\
(vs)?- ——A-z -at=0 (171)
Aw
-V,
vis+ Q@Z—AL =0 172)
where:
2
n = ke
If wz is quite large, then Equation (171) may be written as:
2
v8)? = n (173)

The solution to Equation (173) is simply to find a function whose gradient of the magni-
tude, but not the direction, is given as nz. Hence, according to the type of wavefront
to be represented, a surface may be chosen where at every point we assign a constant
value of S, say SO. The gradient of S is perpendicular to S at each point in question

and VS may be completely defined. To find another surface S = S_ + S, perpendiculars

to the defined surface may be constructed of lengths equal to VS /on where 7 is the value
of the index of refraction at the point in question. The traces of the constructed per-
pendicular vectors then define the desired surface. Hence, this is the method of
producing surfaces of constant S. As VS — 0 in the limit, Equation (173) is satisfied.
The surfaces of constant S represent the electromagnetic wavefront. The perpendicu-
lars represent the rays used in the previous derivations. The differential equation of

the ray will now be determined.
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Consider the surface of Figure 8 to represent a wavefront.

WAVE FRONT

Figure 8. A Vector Analysis of a Wavefront

In this figure, t is the normal unit vector to S and hence represents the ray. Ata
point T' on the ray t at a distance S + A S, t + dt represents the direction of the ray
for the new suriace at T° . At point T*, the vector representing T' ist ds/n; as

| VS | = nand dS/7 is in the direction of VS. Hence at T', t + dt can be drawn per-
pendicular to S=S +AS. Let u and v be unit vectors perpendicular to t. By definition
v=txu. T''is a point along u a distance dp from R. T''!' is in the direction of t

at a distance dS/(n+ Vp - udp) where n+ V7 * udp represents the new value of

n+ T' and T''' can both be proven to lie in the same wavefront. As 7is assumed not
to change in the v direction, it can also be proven that t + dt i8 normal to the plane
specified by T T and v. Hence:

1

RT''! =dpu+§ — i
1+ -udp
n

t (174)
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Vo
T|T|n=RT'll_RTl=dp<u-—nT}-l—>dat (175)

where:

:|g§

asuxv=tandtxv=-u

| 11t v .
prdts XV VDU (176)
ITITIIII n
hence:
dt Vnru
©- W 177

Equation (177) is the differential equation of the ray. While its derivation may leave
(18]

something to be desired, the author refers the reader to Kerr , which suggests the

foregoing analysis. Equation (177) gives a method for obtaining a ray type analysis from
a direct consideration of Maxwell ' s equations. Hence, knowing a point R on the energy

wavefront, a point T' can be determined by choosing a value of d0.
RT' = tdo (178)
The direction of the ray at T' is equal to:

HT') = {R) + ‘;la (R) do (179)
As do —0, the segments so obtained approach the continuous ray.

B. The Effect of 17

It is now interesting to look at the ray pattern for first a homogeneous free-space
atmosphere and then the stratified atmosphere. For the homogeneous atmosphere,
clearly V7 is equal to zero. Hence from Equation (177) dt/do is equal to zero.

Hence from Equation (179) the rays then can be seen to be indeed straight lines.

(13) Kerr, op. cit., pp. 41-50.
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However, for the time, assume that the physical earth conditions may be repre-
sented by an index of refraction which changes only in the height direction. If the
earth andits atmosphere arerepresented by the conventional x, y, z coordinate system,
then 7 is everywhere only in the z direction. It then follows from the ray equations
that for this somewhat idealized case of a stratified atmosphere that the rays repre-
senting the correct energy wavefronts are curves lying in planes passing through the
z axis. This can be better seen if the absolute value of Equation (177) is obtained:

lg‘f, | = ———IVT'TI)' = (w
If |Vn | is considered vertical, then |V |- u= |Vn|. Also, if n is considered
approximately unity then:

R [Vnl

where R is the radius of curvature. Hence,for a constant gradient of 7 the rays are

approximately arcs of circles.

C. The Modified Index and Effective A,

Under these assumptions, the straight-line ray analysis is seen to fall apart.
However, it is possible to introduce a new parameter called the modified index of
refraction N. The author will mainly state the following results obtained from Kerr.

A modified index of refraction is obtained by considering Snell's Law and the previously
derived ray equations:

_ zZ yA
N=(1+7)nen+ (180)

asnel.

Where as 1 generally decreases with height Z, where A is the radius of the earth,
the modified index N will be seen to increase with height. When n decreases linearly

with height:

d
n= n0+<g§) z (181)
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where the rays are represented by straight-line segments instead of segments of arcs.
The previous is obtained by & consideration of Maxwell' 8 equations, the ray tracing
equations, and Snell's Law.

If dn/dZ (2) is small compared to 7 0’ the value for free space, then:

Z
N=n,(1+57) (182)
e
where:
1 _ 1 dg 1
A, o, 9z A (183)

A represents an effective radius of the earth, and n 0 & 1. Measurements have shown
that, with the exception of a few hundred feet close to the earth, the gradient of 7 is
such that the effective radius of the earth is:

Ae = 4/3 (True Radius) (184)

Hence, through the utilization of an effective earth's radius, a linear profile for the
index of refraction may be taken into account in the analysis of the interference region.
For a profile other than that of the linear case, the preceding becomes a poor assump-
tion. However, the conditions may be so varied from one physical situation to another
that it is impractical to attempt to obtain any type of a general qualitative analysis. If
the profile for the index of refraction cannot be assumed linear, then the analysis

would fall under a special classification such as duct propagation.

D.  Additional Limitations on a Ray Analysis

In the solution of the radar wave equation, the ray analysis was derived under the

assumption that:

v
A < p? (185)
Aw
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Through the analysis of this inequality and Equation (142) it can be shown that Equation
(185) implies the restriction that the index of refraction must not change appreciably

in a distance equal to that of the wave length of propagation. This is the reason that

as the frequency increases the assumption of Equation (185) becomes increasingly more
accurate. For a ray analysis it has been found that the preceding is in general valid

from physical measurements.

An analysis of Equation (142) also imposes the restriction on the ray analysis
that the fractional change in the spacing,between the bundle of rays representing the
traveling energy, must be small when compared to unity over a distance of one wave
length. In essence it must be remembered that a single ray has no meaning, but rather
the single ray is used to indicate the composite bundles of rays which in turn represent
the energy wavefronts. Hence, in the analysis, this condition is violated whenever it
assumes that a focus exists. In considering rays which are curved, this condition is
also violated when the rays undergo a change in sign of their curvature. To analyze
the conditions imposed by Equation (142) it becomes necessary to resort to physical

rather than geometric optics.

The previous ray analysis was presented with the intent to stress that problem
areas exist where a ray analysis in the interference region may lead to erroneous re-
sults and conclusions. The reader should hence keep these areas of validity, and the
assumptions that are made in the analysis,in mind when using the theoretical geometri-
cal equations derived for the interference region. The author did not analyze in detail
these situations where the ray analysis leads one into a meaningless procedure. The
many different situations which may arise should be given their own separate analysis
utilizing physical optics or the wave equations and physical optics. For the remaining
section of this paper, it will be assumed that the index of refraction changes linearly
with height and that the wavefronts may be analyzed by the method of straight ray
analysis,assuming the modified radius of the earth to take into account the physical

curvature of the rays assuming a linear profile for 7.
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E.  The Rough Reflector

At this point, it might be beneficial to analyze the effect of the reflective surface
roughness. It has been previously assumed that the surface-could be represented by
an even or smooth boundary with no irregularities. Consider a roughness whose height
isequal to h. Let y represent the angle of incidence. Reference may be made to

Figure 9.
INCIDENT
s Regkngeo
SURFACE | ¢
ROUGH- h
NESS i ¥

Figure 9. Phase Difference between Rays Reflected from Two
Levels

The phasge difference between the two rays is equal to:
AR =2hsiny (186)

which corresponds to a phase difference of:

KAR = % siny - (187)

Hence, in terms of this phase difference, the surface roughness may be specified.

When the phase difference equals 7, the surface is effectively its roughest. There is
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no established criterion on just what constitutes a rough surface but the following may

be chosen:

hsiny < % (188)

If hsiny < % this surface may be assumed smooth.

Needless to say, this is only a crude quantitative analysis of surface roughness.
If the irregularity is of the order of a wave length, then the problem of refraction
should be considered. Equation (188) does, however, emphasize that the reflected energy
is less affected by a given height of roughness as y decreases or as A increases. For
a surface for which the roughness has to be represented as a statistical distribution of
irregularities, the method of analysis is undeveloped at this time. Truly a ray analysis
fails for this situation and at present electromagnetic wave theory has trouble handling
the boundary conditions involved for a statistical distribution of surfaces. Hence,an
analysis of this type at the present state-of-the-art is made by use of rough and simpli-
fied refraction theory or from direct physical observations and attempted correlation.
However, very little may be said at the present time in terms of a definite correlation

between roughness and reflection.

There has been some work done by assuming that the surface roughness can be
represented by a series of ellipses within which a given phase retardation for reflection
can be assumed. The basis of this assumption is that a single reflected ray is in essence
representing radiation from the actually illuminated surface. In reality a large surface
is illuminated by the incident energy. Currents at the surface are then induced which
in turn cause radiation in all directions. At a specific point in space, the sum of the
induced radiation components yields the reflected field. The area and dimension of
each ellipse can be derived in terms of the wave length of radiation involved,such that
the phase of the radiation from each ellipse is essentially constant. If the surface
roughness is consequently larger than the calculated ellipse, then an analysis can be
carried out by assuming essentially multiple reflection points in a ray analysis and
making calculations based upon this assumption. The usefulness of this technique,in

general,may be limited and hence the mathematical derivations have been excluded.
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However, the reader should become aware of the surface roughness problem in a
theoretical analysis. Even if the surface roughness over a given area of reflection in

a physical situation could be specified, which is many times difficult, the analysis
techniques are not well defined. A qualitative analysis for each physical situation
involved may be made in respect to the preceding, but to attempt to obtain a quantitative
type of analysis is almost hopeless in view of the parameters involved and the state-of-
the-art. It appears that a theoretical analysis should be carried out by assuming a
smooth earth and then modifying the results qualitatively should the roughness phenome-

non appear to be prominent in the overall analysis.

F. Antenna Phase Pattern Effect

It might be interesting at this point to consider the situation where the energy
radiated from the transmitting antenna is not of the same phase in the direction of ¢1
and ¢2. From the previous analysis of F the following conclusion can be immediately
drawn. If f( ¢1) or f( ¢2) are complex, then they can be represented as a complex number
in the expression of F. Hence, the analysis as carried out in the derivations need to be
only slightly modified. The effect of such circumstances would be difficult to analyze
in general. However, one would expect that the shape of the lobes of coverage of the
transmitting equipment would be changed. In other words, the area of maximum coverage

could be governed in this fashion.

The feasibility of being able to specify a phase difference from the different parts
or sections of the antenna is a different problem. So far as the author knows, no
commercial producers of high-powered antennas specify a phase difference in radiation

from various sectors of their antennas.
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CHAPTER VI

A DIGITAL COMPUTER ANALYSIS

It is appropriate at this time to present a method which is applicable to finding
the coverage diagram of a transmitter located over an assumed smooth surface and in
an atmosphere whichhas alinear profile for the index of refraction. The type of trans-
mission will be assumed as two way or the coverage diagrams obtained will be that for
a radar. The method will involve the solution of the equations of Chapter VI (A) by a
high-speed digital computer — specifically the IBM 704 or 709 or 7090. However, the
resulting computer program should give considerable help to the reader in applying the

techniques to any digital computer.

A. The Necessary Equations

The necessary equations to completely specify the problem and plot the coverage

diagram are as follows. Reference should be made to Figure 1.

1. Equation (30) gives the free-space radar range equation:

w
JRVY R A ¢\
Ry _‘[ w_ 4 \/41r (30)

where G is the maximum gain of the transmitter, A\ the wave length of the transmitted

waves, Wt the peak power output of the transmitter in watts, Wr the minimum value

of useful power to the receiver, and 0 the target area in square meters.

2. The following equation is useful to give the maximum possible value of R2

under ideal conditions:

R = 2R 189
2max 0 (189)
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3.  An empirical solution for the radius of the earth as obtained by Massachusetts
Institute of Technology 's Lincoln Laboratory will be used. This equation assumes an
ellipsoidal earth:

Ae = 1852(3438.26815 + 577804 cos(2L) + 0.01222 cos(4L) + Hrs) (190)

where L is the latitude in degrees of the area covered in reference to the geometric
north pole, and Hrs is the height above sea level in meters of the area involved. A
linear profile for the index of refraction will be assumed in all calculations, hence the
effective earth radius will be 4/ 3 the calculated value. The region of reflection will
be assumed spherical after the above computation.

4. The two equations which indicate the boundary of the interference region
will be employed. These equations previously appeared as Equations (146) and (148).
The distance from the point Z_ to the horizon is:

1
B 2 2

d = \/ (Z, +A)" - A (146)

If R2 is greater than d.h:
2 2
> -
2min e ¥ Ae ¥ d1
4 =R =%
5. The value of the angle formed with the center of the earth as a function of

Zl, Z2, and R2 is a desired parameter. From Equation (125) the angle results:

(s-A -Z)Ys-A -2)
_ -1 e 1 e 2
61»2ta.n / S(S-Rz)

(125)
2A,+R, + Z + Z,

2

2

s =
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6. The value of the tangent of 011 and az {s needed to find the distances R1
and R_. Equations (117) and (118) rewritten appear as:

3
sm(e1 - 0)
tana, = cos (0, - ) -RAR + 2,) (117
tana = sin @ 11
27 “cos0+R/AR Z,) (118
7. The values of R1 and R 3 are hence given by Equations (121) and (122):
\ [(z 1) + (2, x Z)/Ae] |
R1 = ) cos ‘ Ae (121)
1
where:
Z-= cos(91 - 6)
s Bcosf) - 1) + (2, cos 6)/Ae] ?
R3 ) l cosa ' s Ae (122)
. 2
8. The value of & is given by Equation (151) as:
T(T - Ae - Z2)
(151)
R3 + 2Ae + Z2

T= 2

9. From Equation (151), the values of w3, ¥ 4 wz and ¢2 may be determined

as:

Yy=T- 6-0 (152)

yy=T-6-6 (153)
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2 (154)

m

¢2 =-(3 " (155)
10. The value of ¢1 is needed for completely specifying the transmitter func-
tions and appears as Equation (157):

/(s-a )S -R.)
4 2 U
¢, =2tan 56 -Ry le, |

(157)
R, +R, +R,
2

11. The complex values of the coefficient of reflection are given by:

€ sin zpz

(134)

\/ cos zpz
€ sim,l)2 ,/ —cos zp

smw \/ —cos wz (135)
5
sinap +,/ cos zp

where (v) and (h) designate vertical and horizontal polarization respectively and

f

E’c equals ¢ 1 j60 A 0, with units as previously defined.
12. The divergence of energy from a curved surface is taken into account
by D:
+ o
. Ae(R1 R3) sin al cosa,

(145)
\/{(Ae + Z,)R, cosy, + (A_+ Z,)R,cos y, } (A, *+Z))(A, + Z,)8in0,



13. From Equations (32) and (41), the propagation factor F is given by:

F= I[f(qbl) +(9,) TDe ’”] l
where:

am
Y= (AR

AR=R1+R3-R

z0

2
-3y

€ =co8Y - jsiny

14. It will be found convenient to specify a quantity K2 as:

K o5 o
2 RZ R2
ZRO

From Equation (28), the power received by the radar receiver is equal to:

GZ}\Z o F4

w =
(4m’R}

rl

with units as previously defined. Utilizing Equation (30):
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(191)

(192)

(193)

(194)

(195)

(196)

(197)
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Therefore:

U ¢ (198)

Hence, from Equation (198), the target as a function of Zl’ Z,, and R2 is within the

2 1
pattern of coverage of the transmitter if:

IKZF]4 z 1.0 (199)

The target is outside the area of coverage of the receiver if:

4
IKZF] < 1.0 (200)

Hence, the pattern of coverage is determined by assuming a fictitious target over a
suitable grid representing the interference region and then determining at each point

if Equation (199) or (200) prevails.

The preceding equations have been chosen because they are advantageous for the
purpose of plotting a coverage diagram. First, any desired degree of accuracy may be
maintained. Secondly, they are functions of the parameters used in a coverage analysis.
Thirdly, they represent, in as far as is feasible, the actual situation involved. True,
some situations have been idealized. However, the composite relations are worthy of
a detailed analysis because they give an insight into the various relations involved. In
many cases, they approach reasonably well the practical situation. This is especially
true for an area over the ocean. This is because the surface of the sea does not differ

from the theoretical as greatly as a terrain. Certainly, they provide at their worst,



basic building blocks upon which the coverage analysis may rest. This {s becoming
increasingly important in establishing high frequency criteria for design.

B.  General Computation Logic

The general logic used to solve the previous equations is to digitally trace the
pattern of coverage as formed in space. The logic first assumes some starting
value of range R2 and target height z2. At this set value of Rz, the value of 22 is
reduced until the boundary condition between Equations (199) and (200) is sat